반응형
Pytorch Lightning을 이용한 CNN Classifier
class CNNClassifier(pl.LightningModule):
def __init__(self):
super(CNNClassifier, self).__init__()
def forward(self, x):
def configure_optimizers(self):
def training_step(self, batch, batch_idx):
def validation_step(self, batch, batch_idx):
def test_step(self, batch, batch_idx):
def predict_step(self, batch, batch_idx):
model = CNNClassifier(num_classes=10, dropout_ratio=0.2)
early_stopping = EarlyStopping(moniter='valid_loss', mode='min')
csv_logger = CSVLogger(save_dir="./csv_logger", name='test')
# EarlyStopping, CSVLogger가 자체 내장되어있어 불러오기만 하면 된다
trainer = Trainer(max_epochs=100, accelerator='auto', callbacks=[early_stopping], logger=csv_logger)
trainer.fit(model, train_dataloader, val_dataloader)
train.test(model, test_dataloader)
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import pytorch_lightning as pl
class CNNClassifier(pl.LightningModule):
def __init__(self):
super(CNNClassifier, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
self.fc1 = nn.Linear(32 * 8 * 8, 128)
self.fc2 = nn.Linear(128, 10)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2d(2, 2)
def forward(self, x):
x = self.relu(self.conv1(x))
x = self.maxpool(x)
x = self.relu(self.conv2(x))
x = self.maxpool(x)
x = x.view(-1, 32 * 8 * 8)
x = self.relu(self.fc1(x))
x = self.fc2(x)
return x
def configure_optimizers(self):
return optim.Adam(self.parameters(), lr=0.001)
def training_step(self, batch, batch_idx):
inputs, labels = batch
outputs = self(inputs)
loss = nn.CrossEntropyLoss()(outputs, labels)
self.log('train_loss', loss)
return loss
def validation_step(self, batch, batch_idx):
inputs, labels = batch
outputs = self(inputs)
loss = nn.CrossEntropyLoss()(outputs, labels)
self.log('val_loss', loss)
return loss
class MyCallback(pl.Callback):
def on_epoch_end(self, trainer, pl_module):
print(f"Epoch {trainer.current_epoch}, Train Loss: {trainer.callback_metrics['train_loss']}, Val Loss: {trainer.callback_metrics['val_loss']}")
# 데이터셋 준비
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
val_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=64, shuffle=False)
# 모델과 Trainer 생성
model = CNNClassifier()
callback = MyCallback() # 각 에폭이 끝날 때마다 훈련/검증 손실을 출력하는 콜백 클래스
trainer = pl.Trainer(max_epochs=5, progress_bar_refresh_rate=20, callbacks=[callback])
# 훈련 옵션, 훈련 루프, 평가
# 모델 훈련
trainer.fit(model, train_loader, val_loader)
반응형
'AI' 카테고리의 다른 글
2024 AI Stages : ML Competition_House Price Prediction (0) | 2024.04.03 |
---|---|
(2024-03-14) Hydra (1) | 2024.03.14 |
(2024-02-02) XGBoost와 아이들 (0) | 2024.02.02 |
(2024-01-17) 통계 (0) | 2024.01.24 |
(2023-12-29) Python EDA (0) | 2024.01.10 |